Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Nat Commun ; 15(1): 2576, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538590

RESUMO

We have previously identified a network of higher-order brain regions particularly vulnerable to the ageing process, schizophrenia and Alzheimer's disease. However, it remains unknown what the genetic influences on this fragile brain network are, and whether it can be altered by the most common modifiable risk factors for dementia. Here, in ~40,000 UK Biobank participants, we first show significant genome-wide associations between this brain network and seven genetic clusters implicated in cardiovascular deaths, schizophrenia, Alzheimer's and Parkinson's disease, and with the two antigens of the XG blood group located in the pseudoautosomal region of the sex chromosomes. We further reveal that the most deleterious modifiable risk factors for this vulnerable brain network are diabetes, nitrogen dioxide - a proxy for traffic-related air pollution - and alcohol intake frequency. The extent of these associations was uncovered by examining these modifiable risk factors in a single model to assess the unique contribution of each on the vulnerable brain network, above and beyond the dominating effects of age and sex. These results provide a comprehensive picture of the role played by genetic and modifiable risk factors on these fragile parts of the brain.


Assuntos
Doença de Alzheimer , Encéfalo , Humanos , Envelhecimento/genética , Doença de Alzheimer/genética , Fatores de Risco , Dióxido de Nitrogênio
2.
Brain Commun ; 5(6): fcad282, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075949

RESUMO

Huntington's and Parkinson's disease are two movement disorders representing mainly opposite states of the basal ganglia inhibitory function. Despite being an integral part of the cortico-subcortico-cortical circuitry, the subthalamic nucleus function has been studied at the level of detail required to isolate its signal only through invasive studies in Huntington's and Parkinson's disease. Here, we tested whether the subthalamic nucleus exhibited opposite functional signatures in early Huntington's and Parkinson's disease. We included both movement disorders in the same whole-brain imaging study, and leveraged ultra-high-field 7T MRI to achieve the very fine resolution needed to investigate the smallest of the basal ganglia nuclei. Eleven of the 12 Huntington's disease carriers were recruited at a premanifest stage, while 16 of the 18 Parkinson's disease patients only exhibited unilateral motor symptoms (15 were at Stage I of Hoehn and Yahr off medication). Our group comparison interaction analyses, including 24 healthy controls, revealed a differential effect of Huntington's and Parkinson's disease on the functional connectivity at rest of the subthalamic nucleus within the sensorimotor network, i.e. an opposite effect compared with their respective age-matched healthy control groups. This differential impact in the subthalamic nucleus included an area precisely corresponding to the deep brain stimulation 'sweet spot'-the area with maximum overall efficacy-in Parkinson's disease. Importantly, the severity of deviation away from controls' resting-state values in the subthalamic nucleus was associated with the severity of motor and cognitive symptoms in both diseases, despite functional connectivity going in opposite directions in each disorder. We also observed an altered, opposite impact of Huntington's and Parkinson's disease on functional connectivity within the sensorimotor cortex, once again with relevant associations with clinical symptoms. The high resolution offered by the 7T scanner has thus made it possible to explore the complex interplay between the disease effects and their contribution on the subthalamic nucleus, and sensorimotor cortex. Taken altogether, these findings reveal for the first time non-invasively in humans a differential, clinically meaningful impact of the pathophysiological process of these two movement disorders on the overall sensorimotor functional connection of the subthalamic nucleus and sensorimotor cortex.

3.
Neuroimage ; 265: 119779, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462729

RESUMO

Resting-state fMRI studies have shown that multiple functional networks, which consist of distributed brain regions that share synchronised spontaneous activity, co-exist in the brain. As these resting-state networks (RSNs) have been thought to reflect the brain's intrinsic functional organization, intersubject variability in the networks' spontaneous fluctuations may be associated with individuals' clinical, physiological, cognitive, and genetic traits. Here, we investigated resting-state fMRI data along with extensive clinical, lifestyle, and genetic data collected from 37,842 UK Biobank participants, with the object of elucidating intersubject variability in the fluctuation amplitudes of RSNs. Functional properties of the RSN amplitudes were first examined by analyzing correlations with the well-established between-network functional connectivity. It was found that a network amplitude is highly correlated with the mean strength of the functional connectivity that the network has with the other networks. Intersubject clustering analysis showed the amplitudes are most strongly correlated with age, cardiovascular factors, body composition, blood cell counts, lung function, and sex, with some differences in the correlation strengths between sensory and cognitive RSNs. Genome-wide association studies (GWASs) of RSN amplitudes identified several significant genetic variants reported in previous GWASs for their implications in sleep duration. We provide insight into key factors determining RSN amplitudes and demonstrate that intersubject variability of the amplitudes primarily originates from differences in temporal synchrony between functionally linked brain regions, rather than differences in the magnitude of raw voxelwise BOLD signal changes. This finding additionally revealed intriguing differences between sensory and cognitive RSNs with respect to sex effects on temporal synchrony and provided evidence suggesting that synchronous coactivations of functionally linked brain regions, and magnitudes of BOLD signal changes, may be related to different genetic mechanisms. These results underscore that intersubject variability of the amplitudes in health and disease need to be interpreted largely as a measure of the sum of within-network temporal synchrony and amplitudes of BOLD signals, with a dominant contribution from the former.


Assuntos
Mapeamento Encefálico , Estudo de Associação Genômica Ampla , Humanos , Mapeamento Encefálico/métodos , Descanso/fisiologia , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia
4.
PLoS One ; 17(9): e0273704, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36173949

RESUMO

INTRODUCTION: Magnetic resonance imaging (MRI) of the brain could be a key diagnostic and research tool for understanding the neuropsychiatric complications of COVID-19. For maximum impact, multi-modal MRI protocols will be needed to measure the effects of SARS-CoV-2 infection on the brain by diverse potentially pathogenic mechanisms, and with high reliability across multiple sites and scanner manufacturers. Here we describe the development of such a protocol, based upon the UK Biobank, and its validation with a travelling heads study. A multi-modal brain MRI protocol comprising sequences for T1-weighted MRI, T2-FLAIR, diffusion MRI (dMRI), resting-state functional MRI (fMRI), susceptibility-weighted imaging (swMRI), and arterial spin labelling (ASL), was defined in close approximation to prior UK Biobank (UKB) and C-MORE protocols for Siemens 3T systems. We iteratively defined a comparable set of sequences for General Electric (GE) 3T systems. To assess multi-site feasibility and between-site variability of this protocol, N = 8 healthy participants were each scanned at 4 UK sites: 3 using Siemens PRISMA scanners (Cambridge, Liverpool, Oxford) and 1 using a GE scanner (King's College London). Over 2,000 Imaging Derived Phenotypes (IDPs), measuring both data quality and regional image properties of interest, were automatically estimated by customised UKB image processing pipelines (S2 File). Components of variance and intra-class correlations (ICCs) were estimated for each IDP by linear mixed effects models and benchmarked by comparison to repeated measurements of the same IDPs from UKB participants. Intra-class correlations for many IDPs indicated good-to-excellent between-site reliability. Considering only data from the Siemens sites, between-site reliability generally matched the high levels of test-retest reliability of the same IDPs estimated in repeated, within-site, within-subject scans from UK Biobank. Inclusion of the GE site resulted in good-to-excellent reliability for many IDPs, although there were significant between-site differences in mean and scaling, and reduced ICCs, for some classes of IDP, especially T1 contrast and some dMRI-derived measures. We also identified high reliability of quantitative susceptibility mapping (QSM) IDPs derived from swMRI images, multi-network ICA-based IDPs from resting-state fMRI, and olfactory bulb structure IDPs from T1, T2-FLAIR and dMRI data. CONCLUSION: These results give confidence that large, multi-site MRI datasets can be collected reliably at different sites across the diverse range of MRI modalities and IDPs that could be mechanistically informative in COVID brain research. We discuss limitations of the study and strategies for further harmonisation of data collected from sites using scanners supplied by different manufacturers. These acquisition and analysis protocols are now in use for MRI assessments of post-COVID patients (N = 700) as part of the ongoing COVID-CNS study.


Assuntos
Encéfalo , COVID-19 , Humanos , Bancos de Espécimes Biológicos , Encéfalo/diagnóstico por imagem , COVID-19/diagnóstico por imagem , Imageamento por Ressonância Magnética , Fenótipo , Reprodutibilidade dos Testes , SARS-CoV-2 , Reino Unido
5.
Front Aging Neurosci ; 14: 745014, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092806

RESUMO

Sleep plays a key role in supporting brain function and resilience to brain decline. It is well known that sleep changes substantially with aging and that aging is associated with deterioration of brain structure. In this study, we sought to characterize the relationship between slow wave slope (SWslope)-a key marker of sleep architecture and an indirect proxy of sleep quality-and microstructure of white matter pathways in healthy adults with no sleep complaints. Participants were 12 young (24-27 years) and 12 older (50-79 years) adults. Sleep was assessed with nocturnal electroencephalography (EEG) and the Pittsburgh Sleep Quality Index (PSQI). White matter integrity was assessed using tract-based spatial statistics (TBSS) on tensor-based metrics such as Fractional Anisotropy (FA) and Mean Diffusivity (MD). Global PSQI score did not differ between younger (n = 11) and older (n = 11) adults (U = 50, p = 0.505), but EEG revealed that younger adults had a steeper SWslope at both frontal electrode sites (F3: U = 2, p < 0.001, F4: U = 4, p < 0.001, n = 12 younger, 10 older). There were widespread correlations between various diffusion tensor-based metrics of white matter integrity and sleep SWslope, over and above effects of age (n = 11 younger, 9 older). This was particularly evident for the corpus callosum, corona radiata, superior longitudinal fasciculus, internal and external capsule. This indicates that reduced sleep slow waves may be associated with widespread white matter deterioration. Future studies should investigate whether interventions targeted at improving sleep architecture also impact on decline in white matter microstructure in older adults.

6.
Nat Neurosci ; 25(6): 818-831, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35606419

RESUMO

A key aim in epidemiological neuroscience is identification of markers to assess brain health and monitor therapeutic interventions. Quantitative susceptibility mapping (QSM) is an emerging magnetic resonance imaging technique that measures tissue magnetic susceptibility and has been shown to detect pathological changes in tissue iron, myelin and calcification. We present an open resource of QSM-based imaging measures of multiple brain structures in 35,273 individuals from the UK Biobank prospective epidemiological study. We identify statistically significant associations of 251 phenotypes with magnetic susceptibility that include body iron, disease, diet and alcohol consumption. Genome-wide associations relate magnetic susceptibility to 76 replicating clusters of genetic variants with biological functions involving iron, calcium, myelin and extracellular matrix. These patterns of associations include relationships that are unique to QSM, in particular being complementary to T2* signal decay time measures. These new imaging phenotypes are being integrated into the core UK Biobank measures provided to researchers worldwide, creating the potential to discover new, non-invasive markers of brain health.


Assuntos
Bancos de Espécimes Biológicos , Encéfalo , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Mapeamento Encefálico/métodos , Ferro/análise , Imageamento por Ressonância Magnética/métodos , Fenótipo , Estudos Prospectivos , Reino Unido
7.
Nature ; 604(7907): 697-707, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35255491

RESUMO

There is strong evidence of brain-related abnormalities in COVID-191-13. However, it remains unknown whether the impact of SARS-CoV-2 infection can be detected in milder cases, and whether this can reveal possible mechanisms contributing to brain pathology. Here we investigated brain changes in 785 participants of UK Biobank (aged 51-81 years) who were imaged twice using magnetic resonance imaging, including 401 cases who tested positive for infection with SARS-CoV-2 between their two scans-with 141 days on average separating their diagnosis and the second scan-as well as 384 controls. The availability of pre-infection imaging data reduces the likelihood of pre-existing risk factors being misinterpreted as disease effects. We identified significant longitudinal effects when comparing the two groups, including (1) a greater reduction in grey matter thickness and tissue contrast in the orbitofrontal cortex and parahippocampal gyrus; (2) greater changes in markers of tissue damage in regions that are functionally connected to the primary olfactory cortex; and (3) a greater reduction in global brain size in the SARS-CoV-2 cases. The participants who were infected with SARS-CoV-2 also showed on average a greater cognitive decline between the two time points. Importantly, these imaging and cognitive longitudinal effects were still observed after excluding the 15 patients who had been hospitalised. These mainly limbic brain imaging results may be the in vivo hallmarks of a degenerative spread of the disease through olfactory pathways, of neuroinflammatory events, or of the loss of sensory input due to anosmia. Whether this deleterious effect can be partially reversed, or whether these effects will persist in the long term, remains to be investigated with additional follow-up.


Assuntos
Encéfalo , COVID-19 , Idoso , Idoso de 80 Anos ou mais , Bancos de Espécimes Biológicos , Encéfalo/diagnóstico por imagem , Encéfalo/virologia , COVID-19/patologia , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , SARS-CoV-2 , Olfato , Reino Unido/epidemiologia
8.
medRxiv ; 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-34189535

RESUMO

There is strong evidence for brain-related abnormalities in COVID-19 1-13 . It remains unknown however whether the impact of SARS-CoV-2 infection can be detected in milder cases, and whether this can reveal possible mechanisms contributing to brain pathology. Here, we investigated brain changes in 785 UK Biobank participants (aged 51-81) imaged twice, including 401 cases who tested positive for infection with SARS-CoV-2 between their two scans, with 141 days on average separating their diagnosis and second scan, and 384 controls. The availability of pre-infection imaging data reduces the likelihood of pre-existing risk factors being misinterpreted as disease effects. We identified significant longitudinal effects when comparing the two groups, including: (i) greater reduction in grey matter thickness and tissue-contrast in the orbitofrontal cortex and parahippocampal gyrus, (ii) greater changes in markers of tissue damage in regions functionally-connected to the primary olfactory cortex, and (iii) greater reduction in global brain size. The infected participants also showed on average larger cognitive decline between the two timepoints. Importantly, these imaging and cognitive longitudinal effects were still seen after excluding the 15 cases who had been hospitalised. These mainly limbic brain imaging results may be the in vivo hallmarks of a degenerative spread of the disease via olfactory pathways, of neuroinflammatory events, or of the loss of sensory input due to anosmia. Whether this deleterious impact can be partially reversed, or whether these effects will persist in the long term, remains to be investigated with additional follow up.

9.
Sci Rep ; 11(1): 23245, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853362

RESUMO

The first 72 h following aneurysm rupture play a key role in determining clinical and cognitive outcomes after subarachnoid haemorrhage (SAH). Yet, very little is known about the impact of so called "early brain injury" on patents with clinically good grade SAH (as defined as World Federation of Neurosurgeons Grade 1 and 2). 27 patients with good grade SAH underwent MRI scanning were prospectively recruited at three time-points after SAH: within the first 72 h (acute phase), at 5-10 days and at 3 months. Patients underwent additional, comprehensive cognitive assessment 3 months post-SAH. 27 paired healthy controls were also recruited for comparison. In the first 72 h post-SAH, patients had significantly higher global and regional brain volume than controls. This change was accompanied by restricted water diffusion in patients. Persisting abnormalities in the volume of the posterior cerebellum at 3 months post-SAH were present to those patients with worse cognitive outcome. When using this residual abnormal brain area as a region of interest in the acute-phase scans, we could predict with an accuracy of 84% (sensitivity 82%, specificity 86%) which patients would develop cognitive impairment 3 months later, despite initially appearing clinically indistinguishable from those making full recovery. In an exploratory sample of good clinical grade SAH patients compared to healthy controls, we identified a region of the posterior cerebellum for which acute changes on MRI were associated with cognitive impairment. Whilst further investigation will be required to confirm causality, use of this finding as a risk stratification biomarker is promising.


Assuntos
Lesões Encefálicas/patologia , Disfunção Cognitiva/complicações , Hemorragia Subaracnóidea/patologia , Adulto , Idoso , Aneurisma Roto/complicações , Aneurisma Roto/patologia , Lesões Encefálicas/complicações , Lesões Encefálicas/diagnóstico por imagem , Estudos de Casos e Controles , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/diagnóstico por imagem
10.
Nat Neurosci ; 24(5): 737-745, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33875891

RESUMO

UK Biobank is a major prospective epidemiological study, including multimodal brain imaging, genetics and ongoing health outcomes. Previously, we published genome-wide associations of 3,144 brain imaging-derived phenotypes, with a discovery sample of 8,428 individuals. Here we present a new open resource of genome-wide association study summary statistics, using the 2020 data release, almost tripling the discovery sample size. We now include the X chromosome and new classes of imaging-derived phenotypes (subcortical volumes and tissue contrast). Previously, we found 148 replicated clusters of associations between genetic variants and imaging phenotypes; in this study, we found 692, including 12 on the X chromosome. We describe some of the newly found associations, focusing on the X chromosome and autosomal associations involving the new classes of imaging-derived phenotypes. Our novel associations implicate, for example, pathways involved in the rare X-linked STAR (syndactyly, telecanthus and anogenital and renal malformations) syndrome, Alzheimer's disease and mitochondrial disorders.


Assuntos
Encéfalo/diagnóstico por imagem , Genoma Humano , Fenótipo , Bancos de Espécimes Biológicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Imageamento por Ressonância Magnética , Polimorfismo de Nucleotídeo Único , Reino Unido
11.
J Neurosci ; 41(5): 1092-1104, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33436528

RESUMO

The World Health Organization promotes physical exercise and a healthy lifestyle as means to improve youth development. However, relationships between physical lifestyle and human brain development are not fully understood. Here, we asked whether a human brain-physical latent mode of covariation underpins the relationship between physical activity, fitness, and physical health measures with multimodal neuroimaging markers. In 50 12-year old school pupils (26 females), we acquired multimodal whole-brain MRI, characterizing brain structure, microstructure, function, myelin content, and blood perfusion. We also acquired physical variables measuring objective fitness levels, 7 d physical activity, body mass index, heart rate, and blood pressure. Using canonical correlation analysis, we unravel a latent mode of brain-physical covariation, independent of demographics, school, or socioeconomic status. We show that MRI metrics with greater involvement in this mode also showed spatially extended patterns across the brain. Specifically, global patterns of greater gray matter perfusion, volume, cortical surface area, greater white matter extra-neurite density, and resting state networks activity covaried positively with measures reflecting a physically active phenotype (high fit, low sedentary individuals). Showing that a physically active lifestyle is linked with systems-level brain MRI metrics, these results suggest widespread associations relating to several biological processes. These results support the notion of close brain-body relationships and underline the importance of investigating modifiable lifestyle factors not only for physical health but also for brain health early in adolescence.SIGNIFICANCE STATEMENT An active lifestyle is key for healthy development. In this work, we answer the following question: How do brain neuroimaging markers relate with young adolescents' level of physical activity, fitness, and physical health? Combining advanced whole-brain multimodal MRI metrics with computational approaches, we show a robust relationship between physically active lifestyles and spatially extended, multimodal brain imaging-derived phenotypes. Suggesting a wider effect on brain neuroimaging metrics than previously thought, this work underlies the importance of studying physical lifestyle, as well as other brain-body relationships in an effort to foster brain health at this crucial stage in development.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Exercício Físico/fisiologia , Estilo de Vida Saudável/fisiologia , Imagem Multimodal/métodos , Acelerometria/métodos , Acelerometria/tendências , Adolescente , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/tendências , Masculino , Imagem Multimodal/tendências
12.
Neuroimage ; 217: 116923, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32407993

RESUMO

We present a new software package with a library of standardised tractography protocols devised for the robust automated extraction of white matter tracts both in the human and the macaque brain. Using in vivo data from the Human Connectome Project (HCP) and the UK Biobank and ex vivo data for the macaque brain datasets, we obtain white matter atlases, as well as atlases for tract endpoints on the white-grey matter boundary, for both species. We illustrate that our protocols are robust against data quality, generalisable across two species and reflect the known anatomy. We further demonstrate that they capture inter-subject variability by preserving tract lateralisation in humans and tract similarities stemming from twinship in the HCP cohort. Our results demonstrate that the presented toolbox will be useful for generating imaging-derived features in large cohorts, and in facilitating comparative neuroanatomy studies. The software, tractography protocols, and atlases are publicly released through FSL, allowing users to define their own tractography protocols in a standardised manner, further contributing to open science.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/normas , Processamento de Imagem Assistida por Computador/normas , Animais , Atlas como Assunto , Automação , Encéfalo/anatomia & histologia , Conectoma , Bases de Dados Factuais , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão/métodos , Substância Cinzenta/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Macaca mulatta , Vias Neurais/diagnóstico por imagem , Software , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem
13.
Neuroimage Clin ; 26: 102211, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32113174

RESUMO

Huntington's disease (HD) is an inherited, autosomal dominant disorder that is characteristically thought of as a degenerative disorder. Despite cellular and molecular grounds suggesting HD could also impact normal development, there has been scarce systems-level data obtained from in vivo human studies supporting this hypothesis. Sulcus-specific morphometry analysis may help disentangle the contribution of coexisting neurodegenerative and neurodevelopmental processes, but such an approach has never been used in HD. Here, we investigated cortical sulcal depth, related to degenerative process, as well as cortical sulcal length, related to developmental process, in early-stage HD and age-matched healthy controls. This morphometric analysis revealed significant differences in the HD participants compared with the healthy controls bilaterally in the central and intra-parietal sulcus, but also in the left intermediate frontal sulcus and calcarine fissure. As the primary visual cortex is not connected to the striatum, the latter result adds to the increasing in vivo evidence for primary cortical degeneration in HD. Those sulcal measures that differed between HD and healthy populations were mainly atrophy-related, showing shallower sulci in HD. Conversely, the sulcal morphometry also revealed a crucial difference in the imprint of the Sylvian fissure that could not be related to loss of grey matter volume: an absence of asymmetry in the length of this fissure in HD. Strong asymmetry in that cortical region is typically observed in healthy development. As the formation of the Sylvian fissure appears early in utero, and marked asymmetry is specifically found in this area of the neocortex in newborns, this novel finding likely indicates the foetal timing of a disease-specific, genetic interplay with neurodevelopment.


Assuntos
Doença de Huntington/patologia , Neocórtex/anormalidades , Neocórtex/patologia , Adulto , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Degeneração Neural/patologia , Transtornos do Neurodesenvolvimento/complicações , Transtornos do Neurodesenvolvimento/patologia
14.
Elife ; 92020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32134384

RESUMO

Brain imaging can be used to study how individuals' brains are aging, compared against population norms. This can inform on aspects of brain health; for example, smoking and blood pressure can be seen to accelerate brain aging. Typically, a single 'brain age' is estimated per subject, whereas here we identified 62 modes of subject variability, from 21,407 subjects' multimodal brain imaging data in UK Biobank. The modes represent different aspects of brain aging, showing distinct patterns of functional and structural brain change, and distinct patterns of association with genetics, lifestyle, cognition, physical measures and disease. While conventional brain-age modelling found no genetic associations, 34 modes had genetic associations. We suggest that it is important not to treat brain aging as a single homogeneous process, and that modelling of distinct patterns of structural and functional change will reveal more biologically meaningful markers of brain aging in health and disease.


Assuntos
Envelhecimento/fisiologia , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Bancos de Espécimes Biológicos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reino Unido
15.
Neuroimage Clin ; 25: 102099, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31865023

RESUMO

OBJECTIVE: To determine whether brain imaging markers of tissue microstructure can detect the effect of disease progression across the preclinical stages of Huntington's disease. METHODS: Longitudinal microstructural changes in diffusion imaging metrics (mean diffusivity and fractional anisotropy) were investigated in participants with presymptomatic Huntington's disease (N = 35) stratified into three preclinical subgroups according to their estimated time until onset of symptoms, compared with age- and gender-matched healthy controls (N = 19) over a 1y period. RESULTS: Significant differences were found over the four groups in change of mean diffusivity in the posterior basal ganglia and the splenium of the corpus callosum. This overall effect was driven by significant differences between the group far-from-onset (FAR) of symptoms and the groups midway- (MID) and near-the-onset (NEAR) of symptoms. In particular, an initial decrease of mean diffusivity in the FAR group was followed by a subsequent increase in groups closer to onset of symptoms. The seemingly counter-intuitive decrease of mean diffusivity in the group furthest from onset of symptoms might be an early indicator of neuroinflammatory process preceding the neurodegenerative phase. In contrast, the only clinical measure that was able to capture a difference in 1y changes between the preclinical stages was the UHDRS confidence in motor score. CONCLUSIONS: With sensitivity to longitudinal changes in brain microstructure within and between preclinical stages, and potential differential response to distinct pathophysiological mechanisms, diffusion imaging is a promising state marker for monitoring treatment response and identifying the optimal therapeutic window of opportunity in preclinical Huntington's disease.


Assuntos
Gânglios da Base/diagnóstico por imagem , Corpo Caloso/diagnóstico por imagem , Imagem de Tensor de Difusão , Doença de Huntington/diagnóstico por imagem , Sintomas Prodrômicos , Adulto , Gânglios da Base/patologia , Corpo Caloso/patologia , Imagem de Tensor de Difusão/normas , Feminino , Humanos , Doença de Huntington/patologia , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade
16.
Proc Natl Acad Sci U S A ; 116(44): 22341-22346, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31615888

RESUMO

Maternal brain adaptations have been found across pregnancy and postpartum, but little is known about the long-term effects of parity on the maternal brain. Using neuroimaging and machine learning, we investigated structural brain characteristics in 12,021 middle-aged women from the UK Biobank, demonstrating that parous women showed less evidence of brain aging compared to their nulliparous peers. The relationship between childbirths and a "younger-looking" brain could not be explained by common genetic variation or relevant confounders. Although prospective longitudinal studies are needed, the results suggest that parity may involve neural changes that could influence women's brain aging later in life.


Assuntos
Encéfalo/diagnóstico por imagem , Parto , Adaptação Fisiológica , Idoso , Encéfalo/fisiologia , Feminino , Humanos , Aprendizado de Máquina , Pessoa de Meia-Idade
17.
Brain ; 142(10): 2938-2947, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504236

RESUMO

Ninety per cent of the human population has been right-handed since the Paleolithic, yet the brain signature and genetic basis of handedness remain poorly characterized. Here, we correlated brain imaging phenotypes from ∼9000 UK Biobank participants with handedness, and with loci found significantly associated with handedness after we performed genome-wide association studies (GWAS) in ∼400 000 of these participants. Our imaging-handedness analysis revealed an increase in functional connectivity between left and right language networks in left-handers. GWAS of handedness uncovered four significant loci (rs199512, rs45608532, rs13017199, and rs3094128), three of which are in-or expression quantitative trait loci of-genes encoding proteins involved in brain development and patterning. These included microtubule-related MAP2 and MAPT, as well as WNT3 and MICB, all implicated in the pathogenesis of diseases such as Parkinson's, Alzheimer's and schizophrenia. In particular, with rs199512, we identified a common genetic influence on handedness, psychiatric phenotypes, Parkinson's disease, and the integrity of white matter tracts connecting the same language-related regions identified in the handedness-imaging analysis. This study has identified in the general population genome-wide significant loci for human handedness in, and expression quantitative trait loci of, genes associated with brain development, microtubules and patterning. We suggest that these genetic variants contribute to neurodevelopmental lateralization of brain organization, which in turn influences both the handedness phenotype and the predisposition to develop certain neurological and psychiatric diseases.


Assuntos
Lateralidade Funcional/genética , Transtornos Mentais/diagnóstico por imagem , Transtornos Mentais/genética , Adulto , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Feminino , Lateralidade Funcional/fisiologia , Estudo de Associação Genômica Ampla , Humanos , Idioma , Imageamento por Ressonância Magnética/métodos , Masculino , Microtúbulos/genética , Neuroimagem/métodos , Doença de Parkinson/genética , Fenótipo , Substância Branca/diagnóstico por imagem
18.
J Neurosci ; 39(31): 6136-6149, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31152123

RESUMO

Human brain structure topography is thought to be related in part to functional specialization. However, the extent of such relationships is unclear. Here, using a data-driven, multimodal approach for studying brain structure across the lifespan (N = 484, n = 260 females), we demonstrate that numerous structural networks, covering the entire brain, follow a functionally meaningful architecture. These gray matter networks (GMNs) emerge from the covariation of gray matter volume and cortical area at the population level. We further reveal fine-grained anatomical signatures of functional connectivity. For example, within the cerebellum, a structural separation emerges between lobules that are functionally connected to distinct, mainly sensorimotor, cognitive and limbic regions of the cerebral cortex and subcortex. Structural modes of variation also replicate the fine-grained functional architecture seen in eight well defined visual areas in both task and resting-state fMRI. Furthermore, our study shows a structural distinction corresponding to the established segregation between anterior and posterior default-mode networks (DMNs). These fine-grained GMNs further cluster together to form functionally meaningful larger-scale organization. In particular, we identify a structural architecture bringing together the functional posterior DMN and its anticorrelated counterpart. In summary, our results demonstrate that the relationship between structural and functional connectivity is fine-grained, widespread across the entire brain, and driven by covariation in cortical area, i.e. likely differences in shape, depth, or number of foldings. These results suggest that neurotrophic events occur during development to dictate that the size and folding pattern of distant, functionally connected brain regions should vary together across subjects.SIGNIFICANCE STATEMENT Questions about the relationship between structure and function in the human brain have engaged neuroscientists for centuries in a debate that continues to this day. Here, by investigating intersubject variation in brain structure across a large number of individuals, we reveal modes of structural variation that map onto fine-grained functional organization across the entire brain, and specifically in the cerebellum, visual areas, and default-mode network. This functionally meaningful structural architecture emerges from the covariation of gray matter volume and cortical folding. These results suggest that the neurotrophic events at play during development, and possibly evolution, which dictate that the size and folding pattern of distant brain regions should vary together across subjects, might also play a role in functional cortical specialization.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Mapeamento Encefálico/métodos , Criança , Feminino , Substância Cinzenta/anatomia & histologia , Substância Cinzenta/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Adulto Jovem
19.
Brain Inj ; 33(7): 854-868, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30848964

RESUMO

The posterior cingulate cortex (PCC) and corpus callosum (CC) are susceptible to trauma, but injury often evades detection. PCC Metabolic disruption may predict CC white matter tract injury and the secondary cascade responsible for progression. While the time frame for the secondary cascade remains unclear in humans, the first 24 h (hyper-acute phase) are crucial for life-saving interventions. Objectives: To test whether Magnetic Resonance Imaging (MRI) markers are detectable in the hyper-acute phase and progress after traumatic brain injury (TBI) and whether alterations in these parameters reflect injury severity. Methods: Spectroscopic and diffusion-weighted MRI data were collected in 18 patients with TBI (within 24 h and repeated 7-15 days following injury) and 18 healthy controls (scanned once). Results: Within 24 h of TBI N-acetylaspartate was reduced (F = 11.43, p = 0.002) and choline increased (F = 10.67, p = 0.003), the latter driven by moderate-severe injury (F = 5.54, p = 0.03). Alterations in fractional anisotropy (FA) and axial diffusivity (AD) progressed between the two time-points in the splenium of the CC (p = 0.029 and p = 0.013). Gradual reductions in FA correlated with progressive increases in choline (p = 0.029). Conclusions: Metabolic disruption and structural injury can be detected within hours of trauma. Metabolic and diffusion parameters allow identification of severity and provide evidence of injury progression.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico por imagem , Corpo Caloso/diagnóstico por imagem , Giro do Cíngulo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Lesões Encefálicas Traumáticas/metabolismo , Corpo Caloso/lesões , Corpo Caloso/metabolismo , Imagem de Tensor de Difusão , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/metabolismo , Giro do Cíngulo/lesões , Giro do Cíngulo/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuroimagem , Substância Branca/metabolismo , Adulto Jovem
20.
J Cereb Blood Flow Metab ; 39(2): 285-301, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-28857714

RESUMO

Acute cerebral hypoxia causes rapid calcium shifts leading to neuronal damage and death. Calcium channel antagonists improve outcomes in some clinical conditions, but mechanisms remain unclear. In 18 healthy participants we: (i) quantified with multiparametric MRI the effect of hypoxia on the thalamus, a region particularly sensitive to hypoxia, and on the whole brain in general; (ii) investigated how calcium channel antagonism with the drug nimodipine affects the brain response to hypoxia. Hypoxia resulted in a significant decrease in apparent diffusion coefficient (ADC), a measure particularly sensitive to cell swelling, in a widespread network of regions across the brain, and the thalamus in particular. In hypoxia, nimodipine significantly increased ADC in the same brain regions, normalizing ADC towards normoxia baseline. There was positive correlation between blood nimodipine levels and ADC change. In the thalamus, there was a significant decrease in the amplitude of low frequency fluctuations (ALFF) in resting state functional MRI and an apparent increase of grey matter volume in hypoxia, with the ALFF partially normalized towards normoxia baseline with nimodipine. This study provides further evidence that the brain response to acute hypoxia is mediated by calcium, and importantly that manipulation of intracellular calcium flux following hypoxia may reduce cerebral cytotoxic oedema.


Assuntos
Edema Encefálico , Bloqueadores dos Canais de Cálcio/administração & dosagem , Hipóxia Encefálica , Imageamento por Ressonância Magnética , Nimodipina/administração & dosagem , Tálamo , Adulto , Edema Encefálico/diagnóstico por imagem , Edema Encefálico/tratamento farmacológico , Edema Encefálico/etiologia , Edema Encefálico/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Feminino , Humanos , Hipóxia Encefálica/complicações , Hipóxia Encefálica/diagnóstico por imagem , Hipóxia Encefálica/tratamento farmacológico , Hipóxia Encefálica/metabolismo , Masculino , Tálamo/diagnóstico por imagem , Tálamo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...